
Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2018 Universiti Putra Malaysia Press.

ARTICLE INFO

Article history:
Received: 20 October 2017
Accepted: 20 June 2018

E-mail addresses:
lala.s.riza@upi.edu (Lala Septem Riza)
iip@student.upi.edu (Lala Septem Riza)
eddypn@upi.edu (Eddy Prasetyo Nugroho)
munir@upi.edu (Munir)
*Corresponding Author

MetaheuristicOpt: An R Package for Optimisation Based on
Meta-Heuristics Algorithms

Lala Septem Riza*, Iip, Eddy Prasetyo Nugroho and Munir
Department of Computer Science Education, Universitas Pendidikan Indonesia, JL. Setiabudhi, 40154,
Bandung, Indonesia

ABSTRACT

Optimisation, which is a method to obtain optimal or near-optimal values of objective functions, has
been widely used to make a decision in many problem domains, such as engineering, chemical, business,
etc. This research is aimed to build an R package that implements 11 methods based on meta-heuristics
methods that are inspired by natural phenomena and animal behaviours. Here, R programming language
is considered since it is a popular programming language for data science. In this version of the package,
11 meta-heuristic algorithms are implemented, namely particle swarm optimisation (PSO), ant lion
optimizer (ALO), grey wolf optimizer (GWO), dragonfly algorithm (DA), firefly algorithm (FFA), genetic
algorithm (GA), grasshopper optimisation algorithm (GOA), moth flame optimizer (MFO), sine cosine
algorithm (SCA), whale optimisation algorithm (WOA), and harmony search (HS). The methods have
proven to be reliable and stable. To validate the package, the study presents 13 benchmarking functions
in our experiments such as sphere model, Schwefel’s Problem 2.22, Generalised Rosenbrock’s Function
and Step Function. Based on the experiments, package metaheuristicOpt produces optimal solutions as
indicated by references proposing respective algorithms.

Keywords: Meta-heuristics algorithm, optimisation, R programming language, software library, Swarm
intelligence

INTRODUCTION

Humans make decision every day based on its
optimal output. For example, to visit a specific
place from our current location, we choose
the best by considering many factors, such as
distance, width of street, traffic condition, type
of transportation, safety, and many others.
Many complicated problems are solved by
optimisation methods, such as molecular
biology (Festa, 2007), electrics measurements

Lala Septem Riza, Iip, Eddy Prasetyo Nugroho and Munir

1402 Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

and electrical engineering (Sergeyev, Daponte, Grimaldi, & Molinaro, 1999), optimal solar
sail steering (Dachwald, 2004).

Additionally, to solve various real-world problems, many researchers have proposed
many methods. These algorithms can be divided into two groups according to the precision of
solutions, such as exact and approximate methods (Talbi, 2009). Algorithms need a software
library so that scientists and engineers can utilise them easily. These packages are very helpful
for others since not every scientist and engineer has the capability to make a program and
sometimes they just need to solve their problems without needing to know the methods in detail.

Therefore, this research is aimed at developing a software library (i.e., a package) that
implements 11 algorithms for dealing with optimisation tasks. These algorithms are included in
the approximate method, which is population based meta-heuristics. The following algorithms
are considered in this paper: particle swarm optimisation (PSO), ant lion optimizer (ALO), grey
wolf optimizer (GWO), dragonfly algorithm (DA), firefly algorithm (FA), genetic algorithm
(GA), grasshopper optimisation algorithm (GOA), moth flame optimizer (MFO), sine cosine
algorithm (SCA), whale optimisation algorithm (WOA), and harmony search (HS).

The package developed was written in R programming language (Ihaka & Gentleman,
1996). It is not only programming language but also an ecosystem that provides over 8000
packages for implementing many methods such as machine learning, natural language
processing, optimisation, etc. For example, in machine-learning domain, we can find the
following packages: frbs (Riza, Bergmeir, Herrera, & Benítez Sánchez, 2015), RoughSets
(Riza et al., 2014), and gradDescent (Riza, Nasrulloh, Junaeti, Zain, & Nandiyanto, 2016a).
For dealing with the optimisation task, we can find several packages, such as Rmalschains and
DEoptim. Additionally, R programming language is considered in this research since according
to a survey conducted by KDnuggets (Piatetsky, 2017), it is most popular programming
language for data science in 2013, 2014, 2015, and 2016. It means the package can be possibly
used by many users in data science.

The paper is organised as follows. Population based meta-heuristics algorithms is discussed
in Section 2 while Section 3 explains the package architecture developed in this research. The
experimental design to validate the proposed package is shown in Section 4 while Section 5
discusses results and Section 6 summarises and concludes the paper.

METHODS

Population Based Meta-Heuristics Algorithms for Optimisation

Basically, optimisation is a process to find best solutions from sets of alternatives. In other
words, given an objective function (f) to be minimised (i.e., a minimisation problem) or
maximised (i.e., a maximisation problem), we need to find x0 such that f(x0)≤f(x) for all x in
sets of solutions for minimisation or such that f(x0)≥f(x) for all x in sets of solutions in the
search space for maximisation. Detailed information regarding an introduction to optimisation
can be found in (Pedregal, 2006). Furthermore, there are many approaches that can be used
for dealing with optimisation tasks. According to the research conducted by Talbi (2009),
these methods can be divided into two kinds: exact methods and approximate methods. The
approximate methods mean that optimal solutions are not guaranteed to be obtained as in

MetaheuristicOpt: An R Package

1403Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

the exact algorithms. In this research, the focus is on approximate methods, especially on
population based meta-heuristics.

Recently, many methods related to population based meta-heuristics have been introduced.
A method that utilises meta-heuristics and selects a solution from a population can be stated
as population based meta-heuristics. They are mostly inspired by natural phenomena. Figure
1 shows general pseudo code applied in population based meta-heuristic methods.

6	
	

the research conducted by Talbi (2009), these methods can be divided into two

kinds: exact methods and approximate methods. The approximate methods

mean that optimal solutions are not guaranteed to be obtained as in the exact

algorithms. In this research, the focus is on approximate methods, especially on

population based meta-heuristics.

Recently, many methods related to population based meta-heuristics

have been introduced. A method that utilises meta-heuristics and selects a

solution from a population can be stated as population based meta-heuristics.

They are mostly inspired by natural phenomena. Figure 1 shows general pseudo

code applied in population based meta-heuristic methods.

Input: Objective function (f(x))

Output: Best solution

Algorithm:

1. Generate initial population (𝑃𝑃!)

2. Evaluate each candidate solution in 𝑃𝑃!

3. Select the best solution

4. while 𝑡𝑡 < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

a. Update new population (𝑃𝑃!) by considering defined operators

b. Evaluate each candidate solution in 𝑃𝑃!

c. Update the best solution

d. 𝑡𝑡 = 𝑡𝑡 + 1

5. end while

Figure 1. General pseudo code in population meta-heuristics methods.

Figure 1. General pseudo code in population meta-heuristics methods

This research considers 11 algorithms as follows:

1. Particle Swarm Optimisation (PSO) (Poli, Kennedy, & Blackwell, 2007): It was proposed
by Kennedy and Eberhart in 1995. In order to update a new population, the method uses
equations for updating on the velocity and position of particles. An example of PSO
implementations is for determining pressure distribution on water pipeline networks (Riza,
Azmi, Rahman, & Sidarto, 2016b).

2. Ant Lion Optimiser (ALO) (Mirjalili, 2015a): It is inspired by smart behaviors of antlion
(i.e., Myrmeleontidae) when hunting ants. In this method, random walk is used to update
a new position, which is a new population.

3. Grey Wolf Optimiser (GWO) (Mirjalili, Mirjalili, & Lewis, 2014): It is inspired by
behaviors of grey wolves (i.e., Canis lupus) in hunting techniques: searching, encircling,
and attacking. The wolves involved are the leaders (i.e., alpha), second level (i.e., beta),
and the lowest level (i.e., omega).

4. Dragonfly Algorithm (DA) (Mirjalili, 2016a): In this method, the following concepts are
considered, as follows: separation, alignment, cohesion, resources, and predator, to update
a new population.

Lala Septem Riza, Iip, Eddy Prasetyo Nugroho and Munir

1404 Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

5. Firefly Algorithm (FFA) (Yang, 2009): It is inspired by tropical firefly. Two essential rules
are involved in these methods: to calculate attractiveness s and to evaluate new solutions
and update light intensity/brightness. These methods have been used for dealing with many
optimisation tasks, such as in calculating pressure distribution on water pipeline networks
(Riza, Kusnendar, Hays, & Sidarto, 2016c).

6. Genetic Algorithm (GA) (Goldberg & Holland, 1988): It is a method based on genetic
evolution that has several operators: mutation, crossover, and selection processes.

7. Grasshopper Optimisation Algorithm (GOA) (Saremi, Mirjalili, & Lewis, 2017): It is
inspired by Grasshoppers’ behaviours, such as attraction and repulsion. These behaviors
are expressed by two equations: social forces and updating position.

8. Moth Flame Optimizer (MFO) (Mirjalili, 2015b): It is inspired by the moth’s natural
navigation techniques as seen in nature called transverse orientation. It is used to design
a mathematical model of spiral flying path of moths around artificial lights (flames).

9. Sine Cosine Algorithm (SCA) (Mirjalili, 2016b): It is based on characteristics of profiles
of sinus and cosines functions. So, to explore and exploit and then to generate a new
population, two functions in sinus and cosines are used.

10. Whale Optimisation Algorithm (WOA) (Mirjalili & Lewis, 2016): It is inspired by the
social behaviors of humpback whales, especially on the bubble-net hunting strategy. There
are some concepts involved to obtain best solution, as follows: encircling prey, bubble-net
attacking method (exploitation phase), and search for prey (exploration phase).

11. Harmony Search (HS) (Geem, Kim, & Loganathan, 2001): It is inspired by the
improvisation of music players to produce harmony in music.

These algorithms are considered because they have solved many tasks. Additionally, these
algorithms are state of the art on optimisation methods.

Metaheuristicopt: Package Architecture, User Guide, and Example

The package proposed to implement 11 methods based on meta-heuristics methods for
dealing with optimisation problems is called metaheuristicOpt. It is submitted into the
Comprehensive R Archive Network (CRAN), and retrieved at https://cran.r-project.org/
package=metaheuristicOpt. Additionally, users can download it free. The package contains
several functions where each name is defined as the abbreviation of the methods as shown in
Figure 2. It can be seen there are 11 functions representing the considered methods and 1 main
function, which is , as the highest level of function. It has the following signature:

MetaheuristicOpt: An R Package

1405Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

So, the function has several arguments as follows:

• an objective function or cost function. It can be seen that the package can be used
for continue problems with a single objective function.

• a string value that represents one of two optimisation types: and

• a vector or single string value representing one of 11 implemented
algorithms, such as for Particle Swarm Optimization.

• a positive integer to determine the number of variables.

• a matrix containing the range of variables.

• a list containing all specific arguments of the chosen algorithm.

Detailed description regarding the arguments can be found in the manual of the package at
the website.

In order to use the package metaheuristicOpt, we firstly need to install it from CRAN, and
then we load it as explained in (Riza et al., 2014; Riza et al., 2015; Riza et al., 2016a). The
following is an example of a user guide to run the package. For example, we need to minimise
the McCormic function defined as (Surjanovic & Bingham, 2017):

Minimise:
with

Figure 3 shows the code showing how to execute the function and its arguments.
In this case, we use GWO algorithm. The results show that the optimum value is -1.913223 at
-0.5473604 and -1.54727 for x1 and x2.

10	
	

Figure 2. Functions included in the metaheuristicOpt package.

Figure 2. Functions included in the metaheuristicOpt package

Lala Septem Riza, Iip, Eddy Prasetyo Nugroho and Munir

1406 Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

Experimental Design

To validate the package, in this research we did experimentations that involved 13 benchmark
functions on optimisation. These functions can be classified into two types of optimisations:
unimodal and multimodal, for minimisation tasks. The following is a list of these functions:

• Unimodal: sphere model (F1), Schwefel’s problem 2.22 (F2), Schwefel’s problem 1.2
(F3), Schwefel’s problem 2.21 (F4), generalised Rosenbrock’s (F5), step function (F6),
and quartic function with noise (F7).

• Multimodal: generalised Schwefel’s problem 2.26 (F8), generalised Rastrigin’s function
(F9), Ackley’s function (F10), generalised Griewank function (F11), generalised penalized
function 1 (F12), and generalised penalized function 2 (F13).

All these functions can be found in Yao, Liu, & Lin, (1999). For example, F8 to F13 are shown
in Figure 4, and we can see these functions are complicated and have many solutions.

12	
	

Figure 3 shows the code showing how to execute the function metaOpt()and

its arguments. In this case, we use GWO algorithm. The results show that the

optimum value is -1.913223 at -0.5473604 and -1.54727 for 𝑥𝑥! and 𝑥𝑥!.
R> mcCormic <- function(x){

+ F <- sin(x[1]+x[2])+(x[1]-x[2])^2-

1.5*x[1]+2.5*x[2]+1

+ return(F)

+ }

R> optimType <- "MIN"

R> algorithm <- "GWO"

R> numVar <- 2

R> rangeVar <- matrix(c(-1.5, 4, -3, 4), nrow=2)

R> control <- list(numPopulation=30, maxIter=300)

R> result <- metaOpt(mcCormic, optimType, algorithm,

numVar, rangeVar, control, seed=1)

to show the result

R> result

$result

 var1 var2

GWO -0.5473604 -1.54727

$optimumValue

 optimum_value

GWO -1.913223

$timeElapsed

 user system elapsed

GWO 1.31 0 1.31

Figure 3. An example to use the package metaheuristicOpt.

Figure 3. An example to use the package metaheuristicOpt

MetaheuristicOpt: An R Package

1407Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

Furthermore, before performing simulations over all benchmark functions, we need to define all
parameters required on each algorithm. In these simulations, we make some sensitivity analysis
on the population size (i.e.,) and maximum iteration (i.e.,) with
the following values: {10, 30, 50, and 100} and {100, 500, and 1000} respectively. For other
parameters, we assign the values with the default ones. So, it is obvious that we simulate 1716
times for all combinations of the algorithms, the benchmark functions and parameter values.

RESULTS AND DISCUSSION

By using scenarios based on the previous section, 1716 simulations were performed. The best
solution for of each function on all the objective functions were compared and shown in Table
1. The best solution refers to values of variables that provide minimum values of the objective
functions. It can be seen that PSO provides best solutions on the function F5, F6, F12, and F13
while the best solutions for F3, F4, F9, and F11 are by GWO. Additionally, best solutions of
F1, F2, F8, F9, and F10 are presented by WOA and the rest are obtained by HS. In short, the
algorithms mostly provide reasonable results for all benchmark functions. It should be noted
that the experiments are not intended to test the algorithms, but to verify and validate that the
package has been run very well when simulating the benchmarking functions. To validate the
algorithms, interested readers can refer the articles proposing the corresponding algorithms.

Furthermore, comparison between the package metaheuristics and other software libraries
available in CRAN is shown in Table 2. According to the table, we can state the package
metaheuristicOpt offers more numbers of methods than the others. From the perspective of
documentation, we have provided a comprehensive manual for common users along with many
examples in the CRAN website. Lastly, the package uploaded in CRAN has the license of the
GNU General Public License, so R users can also modify and improve the package freely.

14	
	

Figure 4. Multimodal benchmark function in 2D. From “Evolutionary

programming made faster”, by X. Yao, Y. Liu, & G. Lin, 1999, IEEE

Transactions on Evolutionary Computation, 3(2), pp. 82-102. Copyright 1999

by IEEE Computational Intelligence Society.

Figure 4. Multimodal benchmark function in 2D. From “Evolutionary programming made faster”, by X. Yao,
Y. Liu, & G. Lin, 1999, IEEE Transactions on Evolutionary Computation, 3(2), pp. 82-102. Copyright 1999
by IEEE Computational Intelligence Society

Lala Septem Riza, Iip, Eddy Prasetyo Nugroho and Munir

1408 Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

Ta
bl

e
1

C
om

pa
ri

so
n

on
 m

in
im

um
 v

al
ue

s o
f t

he
 o

bj
ec

tiv
e

fu
nc

tio
ns

 o
f a

ll
al

go
ri

th
m

s

B
en

ch
m

ar
k

Fu
nc

tio
n

A
lg

or
ith

m
s

PS
O

A
LO

G
W

O
D

A
FF

A
G

A
G

O
A

M
FO

SC
A

W
O

A
H

S
F1

7.
31

E-
25

7.
06

E-
09

2.
84

E-
12

5
7.

05
E-

02
6.

68
E+

02
3.

26
E+

00
6.

38
E-

06
4.

56
E-

19
5.

35
E-

16
2.

37
E-

13
4

3.
53

E-
05

F2
5.

50
E-

14
6.

68
E+

00
2.

14
E-

71
2.

48
E+

00
7.

72
E-

01
4.

22
E-

01
1.

13
E-

03
3.

76
E-

13
1.

07
E-

08
3.

29
E-

75
1.

24
E-

02
F3

1.
80

E-
17

2.
25

E-
03

1.
17

E-
62

3.
14

E+
02

1.
44

E+
03

9.
96

E+
02

8.
81

E-
02

5.
32

E-
03

1.
04

E-
04

1.
23

E+
02

1.
78

E+
02

F4
6.

07
E-

11
3.

10
E+

00
1.

86
E-

41
2.

05
E+

01
4.

82
E+

01
4.

52
E+

00
1.

90
E-

01
7.

24
E+

00
1.

46
E-

05
1.

98
E+

01
1.

60
E+

00
F5

8.
20

E-
02

1.
63

E+
01

7.
19

E+
00

2.
59

E+
03

1.
43

E+
03

5.
92

E+
01

2.
86

E+
01

7.
21

E-
01

7.
37

E+
00

7.
18

E+
00

2.
42

E-
01

F6
3.

13
E-

25
2.

76
E-

09
1.

09
E-

06
3.

80
E+

01
7.

07
E+

02
9.

82
E+

00
2.

43
E-

06
9.

04
E-

19
4.

29
E-

01
7.

74
E-

04
3.

28
E-

05
F7

6.
56

E-
01

6.
19

E-
01

7.
58

E-
01

9.
21

E-
01

1.
03

E+
00

1.
03

E+
00

9.
90

E-
01

9.
44

E-
01

4.
94

E-
01

3.
54

E-
01

2.
55

E-
01

F8
-1

61
4.

01
-2

28
5.

15
-2

23
3.

52
-2

72
8.

70
-2

61
0.

03
-4

16
5.

29
-2

98
5.

69
-3

47
9.

19
-2

24
9.

93
-4

18
8.

70
-4

18
8.

68
F9

6.
96

E+
00

3.
08

E+
01

0.
00

E+
00

4.
14

E+
01

7.
10

E+
01

1.
70

E+
00

6.
77

E+
01

4.
88

E+
01

2.
56

E-
09

0.
00

E+
00

5.
34

E-
03

F1
0

1.
11

E-
14

2.
58

E+
00

7.
55

E-
15

3.
03

E+
00

8.
20

E+
00

9.
90

E-
02

2.
32

E+
00

2.
36

E-
10

2.
90

E-
08

4.
44

E-
16

6.
34

E-
03

F1
1

8.
03

E-
01

2.
29

E-
01

2.
45

E-
02

1.
14

E-
01

1.
20

E+
02

1.
05

E+
00

2.
23

E-
01

8.
36

E-
02

4.
51

E-
02

1.
46

E-
01

1.
18

E-
01

F1
2

1.
21

E-
26

8.
73

E+
00

1.
57

E-
07

4.
53

E-
01

2.
69

E+
01

3.
93

E-
01

2.
58

E-
01

1.
17

E-
21

1.
57

E-
01

1.
92

E-
02

1.
05

E-
06

F1
3

1.
45

E-
27

7.
58

E-
08

1.
54

E-
06

2.
59

E+
04

2.
34

E+
01

2.
27

E-
01

2.
11

E-
02

1.
10

E-
02

5.
68

E-
01

2.
20

E-
02

1.
60

E-
02

MetaheuristicOpt: An R Package

1409Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

CONCLUSION

The package metaheuristicOpt, providing the implementation of 11 algorithms included in
population based meta-heuristics for optimisation, has been developed. It can be downloaded
from CRAN at https://cran.r-project.org/package=metaheuristicOpt. Moreover, 13 benchmark
functions in optimisation are used to test the package. The results show that all solutions
obtained are reasonable. Therefore, the package can be used as an alternative software library
for dealing with optimisation tasks. Moreover, in the future, the researchers plan to improve
the package by adding other methods. Supporting parallel computing can be also considered
in the next research.

REFERENCES
Bergmeir, C. N., Molina Cabrera, D., & Benítez Sánchez, J. M. (2016). Memetic algorithms with local

search chains in R: The Rmalschains package. Journal of Statistical Software, 75(4), 1-33.

Dachwald, B. (2004). Optimization of interplanetary solar sailcraft trajectories using evolutionary
neurocontrol. Journal of Guidance, Control, and Dynamics, 27(1), 66-72.

Festa, P. (2007). On some optimization problems in molecular biology. Mathematical Biosciences,
207(2), 219-234.

Table 2
Comparison metaheuristicOpt with other software libraries

No Software Libraries Numbers
of Method

Algorithms Support
on Parallel
Computing

References

1 MetaheuristicOpt 11 PSO, ALO, GWO), DA,
FFA, GA, GOA, MFO,
SCA, WOA, and HS

No -

2 DEoptim 1 Differential Evolution Yes (Mullen, Ardia , Gi l ,
Windover, & Cline, 2011)

3 hydroPSO 5 PSO and its variants:
Standard PSO 2011,
Standard PSO 2007,
ipso, fips, and canonical
PSO

Yes (Zambrano-Bigiarini &
Rojas, 2013)

4 Rmalschains 4 C M A - E S T h e
Cova r i ance Ma t r i x
Adaptation Evolution
Strategy, SW A Solis
We t s s o l v e r , S S W
S u b g r o u p i n g S o l i s
Wets, Simplex

No (B e r g m e i r , M o l i n a
Cab re r a , & Ben í t ez
Sánchez, 2016)

5 NMOF 5 Differential Evolution,
Genet ic Algor i thm,
Local Search, Particle
Swarm Optimisation,
Threshold Accepting

Yes (G i l l i , Mar inge r, &
Schumann, 2011)

Lala Septem Riza, Iip, Eddy Prasetyo Nugroho and Munir

1410 Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony
search. Simulation, 76(2), 60-68.

Gilli, M., Maringer, D., & Schumann, E. (2011). Numerical methods and optimization in finance. USA:
Academic Press is an imprint of Elsevier.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning,
3(2), 95-99.

Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational
and Graphical Statistics, 5(3), 299-314.

Mirjalili, S. (2015a). The ant lion optimizer. Advances in Engineering Software, 83, 80-98.

Mirjalili, S. (2015b). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.
Knowledge-Based Systems, 89, 228-249.

Mirjalili, S. (2016a). Dragonfly algorithm: A new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4),
1053-1073.

Mirjalili, S. (2016b). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based
Systems, 96, 120-133.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software,
95, 51-67.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering
Software, 69, 46-61.

Mullen, K., Ardia, D., Gil, D., Windover, D., & Cline, J. (2011). ‘DEoptim’: An R package for global
optimization by differential evolution. Journal of Statistical Software, 40(6), 1-26.

Pedregal, P. (2006). Introduction to optimization. New York, NY: Springer Science and Business Media.

Piatetsky, G. (2017). New leader, trends, and surprises in analytics, data science, machine learning
software poll. KDnuggetsTM. Retrieved from http://www.kdnuggets.com/2017/05/poll-analytics-data-
science-machine-learning-software-leaders.html.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1),
33-57.

Riza, L. S., Azmi, A. F., Rahman, E. F., & Sidarto, K. A. (2016b). Particle swarm optimization for
calculating pressure on water distribution systems. In Y. Tan, Y. Shi, & B. Niu (Eds.), Proceedings
of the International Conference in Swarm Intelligence (pp. 381-391). Bali, Indonesia: Springer
International Publishing.

Riza, L. S., Bergmeir, C. N., Herrera, F., & Benítez Sánchez, J. M. (2015). FRBS: Fuzzy rule-based
systems for classification and regression in R. Journal of Statistical Software. 65(6), 1-30.

Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Ślezak, D., & Benítez, J. M. (2014).
Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “RoughSets”.
Information Sciences, 287, 68-89.

MetaheuristicOpt: An R Package

1411Pertanika J. Sci. & Technol. 26 (3): 1401 - 1412 (2018)

Riza, L. S., Kusnendar, J., Hays, R. N., & Sidarto, K. A. (2016c). Determining the pressure distribution
on water pipeline networks using the firefly algorithm. In D. Al-Dabass, T. Achalakul, S. Prom-On,
& R. Sarochawikasi (Eds.), Proceedings of the 7th International Conference on Intelligent Systems,
Modelling and Simulation (pp. 31-36). Bangkok, Thailand: Institute of Electrical and Electronics
Engineers, Inc.

Riza, L. S., Nasrulloh, I. F., Junaeti, E., Zain, R., & Nandiyanto, A. B. D. (2016a). gradDescentR: An
R package implementing gradient descent and its variants for regression tasks. In Proceedings of the
International Conference on Information Technology, Information Systems and Electrical Engineering
(pp. 125-129). Yogyakarta, Indonesia: Institute of Electrical and Electronics Engineers, Inc.

Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application.
Advances in Engineering Software, 105, 30-47.

Sergeyev, Y. D., Daponte, P., Grimaldi, D., & Molinaro, A. (1999). Two methods for solving
optimization problems arising in electronic measurements and electrical engineering. SIAM Journal
on Optimization, 10(1), 1-21.

Surjanovic, S., & Bingham, D. (2015). McCormick function. Retrieved August 1, 2017, from https://
www.sfu.ca/~ssurjano/mccorm.html.

Talbi, E. G. (2009). Metaheuristics: From design to implementation. Lille, Prancis: John Wiley & Sons.

Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In O. Watanabe & T. Zeugmann
(Eds.), International symposium on stochastic algorithms (pp. 169-178). Sapporo, Japan: Springer.

Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on
Evolutionary Computation, 3(2), 82-102.

Zambrano-Bigiarini, M., & Rojas, R. (2013). A model-independent particle swarm optimisation software
for model calibration. Environmental Modelling and Software, 43, 5-25.

